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ABSTRACT

We consider nonlinear constrained optimization problems whose objective
and constraint functions are sufficiently smooth. No convexity is assumed.

Our basic tools are from differential topology. We show that these
problems can be reduced to the study of minimizing a Morse function on a
manifold with boundary and we give the geometrical meaning to the first order
conditions, the second order sufficiency conditions, and strict complementary
slackness condition.

Our main concerns are the second order sufficiency conditions,
sensitivity analysis, generic properties of smooth nonlinear programs, global

duality, local uniquenss, and strict complementary slackness.
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SIGNIFICAWCE AND EXPLANATION

Nonlinear optimization problems arise in economic theory, in management

science and in other fields. In the analysis of global optima of such
problems, we quite often assume the functions concerned are convex. But in

. general those functions cannot be expected to be convex.

In this paper it is assumed that those functions are not necessarily

convex but s €ficiently smooth. We show that almost always nonlinear

optimization problems have a unique global solution if global solutions exist,
and we also show that with slightly perturbed data of a special type, those

global optima almost always change smoothly in a certain problem.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MORSE PROGRAMS: A TOPOLOGICAL APPROACH TO
SMOOTH CONSTRAINED OPTIMIZATION

Okitsugu Fujiwara

Introduction
The nonlinear programming problem
Q): minimize{ f(x) subject to g(x) < b}
where x € Rn, b e Rm is called a convex program if f and g are convex.
Convex programs enjoy a number of desirable global propert.es (e.g.
Mangasarian [12], Rockafellar [13]) which do not hold in nonconvex programs.
But these properties are true locally under certain constraint qualifications
(e.g. Fiacco and McCormick [6], Avriel [2]). An important question is: do
these constraint qualifications hold for almost all nonlinear programs? This
question was recently answered affirmatively by Spingarn and Rockafellar [17]
who showed, assuming differentiability of the objective and constraint
functions, at any local minimum point x'  of (Q(u,v)), where

(Q(u,v)): minimize{f(x) - ulx subject to g(x) < b + v},
that the Jacobian matrix of g at x* has full rank; the strict
complementary slackness condition; and the secound order sufficiency conditions
hold at x*, for almost every (u,v) in Rn X Rm.

However their clever argument is analytic and devoid of geometrical

intuition. Spingarn ([14]}, [15]), [16]) has provided a geometrical
interpretation of his results using his notion "cyrtohedra", a generalization

of manifolds with corners.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
is the revised version of Cowles Foundation Discussion Paper No. 539 (Yale
University) supported in part by National Science Foundation Grants ENG-78-
25182 and SOC-77-03277.




The purpose of this paper is also to give a geometrical answer to the
question: do the strong second order sufficiency conditions hold at any local
minimum point for almost all nonlinear programs? Our idea is to reduce the
nonlinear programming problem to a finite family of "well-behaved" nonlinear
programs by perturbing the objective function in & linear fashion and
perturbing the right hand side of the constraints by adding a constant. Each
of the "well-behaved" nonlinear programs will consist of minimizing a Morse

function on a manifold with boundary, where the Morse function has no critical

points on the boundary. The constraint set being a manifold with boundary is
the geometrical meaning of the full rank condition of the Jacobian; the
objective function being a Morse function is the geometrical meaning of the
second order sufficiency conditions; the lack of critical points on the
boundary is the geometrical meaning of strict complementary slackness
condition. Moreover, our perturbation gives us a unique global solution.

We follow a classical tradition of first studying an equality constrained . i

program, in which the feasible region is a manifold without boundary; and then
reducing an inequality constrained program to a finite family of constrained
programs whose constraints consist of a finite set of equalities and one
inequality (through the device of active or binding constraints), where we
decompose the feasible region into a finite number of manifolds with boundary.

Our main concerns are the second order sufficiency conditions (Thecrems

A, F); sensitivity analysis (Theorems B, E); generic properties of smooth

nonlinear programs (Theorems C, H):; strict complementary slackness condition ﬁ

(Theorem G), and local uniqueness (Theorem E).
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2. 3Basic Definitions and Notation

A property that holds except on a subset of R

whose Lebesgue measure
is zero is said to hold at almost every wu ¢ R". The complement of a measure
zero set in R" is said to have full measure in R,

The Jacobian matrix and the Hessian matrix of f at x are denoted by
Df(x) and sz(x) respectively.

Y

Let £ : M Rm be a C map from a k-dimensional CY manifold M

with boundary 3M in R”. Let (¢,U) be a local parametrization of M

at x such that x = ¢(u), u € U ¢S Hk = {x ¢ Rklxk > 0}. The tangent space

T,M of M at x is defined to be the image of D¢(u) : Rk + R, a point

X €M is a regqular point of £ if D(£¢)(u) : Rk + R" s surjective,

otherwise x 1is a critical point of f. A critical point x of

f: M R1 is nondegenerate if the k X k matrix Dz(f¢)(u) is

nonsingular. It is easily shcwn that the above definitions do not depend on

the choice of local parametrization. A point y € R is a regular value of

t, denoted by f A y, if every x ¢ f-1(y) is a regular point of £,

otherwise y is a critical value of f. f : M + R1 is a Morse function if

all critical points ot f are nondegenerate.

Y

let £ : M*N bea C map, ACS N bea c'

submanifold of N. f
-1

is transversal to A, denoted by f A A, if for every x € £ (A),

Image Df(x) + Tf(x)A = Tf(x)N holds, where Df(x) : TxM +> Tf(x)N is the

derivative of f. Two submanifolds A, B of M are transversal denoted by

AAB, if i A B where i : A+ M is the inclusion map. f is an immersion

if for every x € M, Df{(x) : TxM +> T is injective. f is a submersion

f(x)N
if Df(x) 1is surjective for every x € M. f is proper if the preimage of

every compact set in N is compact in M. An immersion that is injective and

proper is called an embedding.




We refer the interested reader to Guillemin and Pollack [8]) for an
introduction to the concepts of differential topology that will be used in
this paper. Those theorems of elementary differential topology which are used

in the body of this paper are stated in the appendix. The proofs of those

theorems can be found in Gillemin/Pollack [8] and Hirsch [10].




3. Equality Constraints: Properties of Morse Programs

Throughout this section we consider a program
(P): minimize {f(x) subject to g(x) = b}

and a perturbation of (P)

(P(u,v)): minimize {f(x) - ulx subject to g{(x) = b + v}

n
where £ : R + R1, g : Rn > Rm; u € Rn, v € Rm; n ? m, and we assume f

and g are of class Cz.

Definition. A program (P) is a Morse program if g 34 b and £ 1is a Morse

function on g '(b).

pefinition. A point x € g '(b) is a critical point of (P) if x is a

critical point of f on g '(b). *
It is easily verified that nondegenerate critical points are isolated

(cf. Guillemin/Pollack [8]). Hence each critical point of a Morse program

(P) is isolated. By the Morse Lemma (Appendix (1)) the local behavior of a

function at a nondegenerate critical point is completely determined, i.e., at

any critical point of a Morse program (P), f has a strict local minimum, a

strict local maximum, or a saddle point.

1f g4 b and g ¢ ¢’ then g '(b) is (n-m)-dimensional c'

submanifold of R" (Appendix (5)). k
A Morse program has three distinguishing properties: ﬁ
(a) The second order sufficiency conditions hold at every local

minimum point of a Morse program (P) (Theorem A).

(b) If x 1is a critical point of a Morse program (P), then the

associated Lagrange multiplier A exists and

BRI ST




Lemma 1.1) If g 4 b, then x € 9-1(b) has a Lagrange multiplier iff x is

m
D2E(x) + Y Aiozgi(x) Dg(x) T

i=1
the matrix is non-

Dg(x) 0

singular (Theorem B).

(c) Generically (P) can be considered a Morse program, namely
(P{u,v)) 1is a Morse program for almost every (u,v) € Rn x Rm
(Theorem C).
We will discuss the existence of the Lagrange multiplier and its
uniqueness geometrically, without using Farkas lemma.

Suppose g Ab and g € CY

(Y > 2). Then M =g '(b) is (n-m)-
dimensional CY submanifold of R"™ and at each point x € M Dg(x) has full
rank, hence R" = Ker Dg(x) ® Im Dg(x)T and TM = Ker Dg(x) (because
differentiating g¢ = b on U, where (¢,U0) is a local parametrization of

M at x = ¢(p), we obtain TxM = Im D$(p) c Ker Dg(x). Comparing dimensions
of both sides we have TM = Ker Dg(x)). A point x € M is a critical point
of £ on M iff DE(x)T | T.M, because D(£4)(p)R" " = DE(x)D$(pIR" "
= p£(x)T, M = {0} iff DE(x)T | TM. Then DE(x)T € Im Dg(x) 7.

Hence we have

a critical point of f on 9'1(b). Moreover the Lagrange multiplier is

uniquely determined.

The next lemma gives a representation of the Hessian matrix of f at i

X € g-1(b), in terms of the seond derivative of the Lagrangian at x. ;

1)
This fact has been pointed out previously by Tanabe ([18] Proposition 1).
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1

Lemma 2.') Let g A b, x be a critical point of M = g (b) with the

m
associated Lagrange multiplier X, [(x) = sz(x) + z AiDZgi(x) and (¢,U0)
i=1

be a local parametrization of M at x such that x = ¢{p) for

peUcRY™, Then D2(£4)(u) = Do(p) L(x)DH(P) .

Proof.z) By the chain rule we have
2 T 2 T O3f(x) 2
(3.1) D (£4)(p) = Do (p) D E(x)Dd(p) + | T Dese)
=1 7
m m
Differentiating z A (g.¢) = Z A.b, on U, we have
. i ci : ivi
i i=1 i=1
m m m ag, (x)
(3.2) po(p)T( ) A.D%q. (x))Dé(p) + ) [ 1A, -—1——;] D%.(p) = 0 .
. i i . . i 9x. b)
i=1 Jj=1 Li=1 3j

Adding (3.2) to (3.1) and taking account Df(x) + z XiDgi(x) = 0, we
obtain D2(£6)(p) = Do(p) T L(x)DO(p) .
Q.E.D.
For s € TxM, L(x)s is in R™ but not necessarily in T,Me To obtain a
linear homomorphism on T,M, we project L(x)s orthogonally onto T/M. We

denote this linear homomorphism on T, M by LM(x), which we call the induced

B ol ol 4

homomorphism of [(x) on T,M (Luenberger [11], 10.4). Let (4,U) be a

local parametrization of M at x such that x = ¢(p), p € U ¢ R™ ™. We can
choose (¢,U) so that the column vectors of D¢(p) are orthonormal in R™.

Then it is easily shown that the matrix representation of LM(x) with respect

1)

This fact has been pointed out previously by Tanabe ((19] Lemma 5.4).
2)

The idea for this proof was first given by Luenberger [11], 10.3.

. ‘ ;




to the column vectors of D¢(p), which is an orthonormal basis of T, M, is

D¢(p)TL(x)D¢(p) (Luenberger {11], 10.4). Hence by Lemma 2 we obtain

W

Lemma 3. Let g i b and let x be a critcal point of f on M= g (b

Then
x 1is nondegenerate iff LM(x) is an isomorphiam .
Note that if x is nondegenerate, then L(x)lT m is 1 -1 since
X

L (x)Dé(p) is 1 - 1, and we have
(3.3) L(X)T M 6 Ker po(p)T = {0} .
If, on the other hand, L(x)TxM n Ker D¢(p)T + {0}, then

dim{L(x)TxM N Ker D¢(p)T} > 1. Hence we have

dim Im{Dp(p)” L(x)D$(p)} = dim D¢(p)TL(x)TxM

dim L(x)TxM - dim{L(x)TxM n Xer D¢(p>T}

< n-m

which contradicts the nondegeneracy of x.
Lemma 3 shows that a Morse function, whose critical points are all
nondegenerate, is an appropriate concept for the analysis of the second order

optimality conditions. Summarizing the above argument, we obtain the first

property of a Morse program.

Theorem A. Let (P) be a Morse program and x be a critical point of

(P). Then we have

(a) Dg(x) has full rank .
. . m T T ﬂ
(b) there exists a unigue X € R such that Df(x)" + Da(x) A = 0
T 2
(c) L(x) = D°f(x) + Z XiD gi(x) induces an isomorphism on T.M
i=1

where M = g~ '(b).

ot v . - L]
. RN
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(d) on T, M, L(x) 1is positive definite iff x 1is a local minimum;

negative definite iff x is a local maximum; indefinite iff

x 1s a saddle point.

Proof. (a), (b), and (c¢) follow from, respectively, g % b, Lemma 1, and
Lemma 3. (d): positive (negative) definite = local minimum (maximum) is
obvious. If x 1is a local minimum (maximum), then [(x) is positive
(negative) semidefinite on T, M. However, since sTlix)s = sTLM(x)s .or
s € T M, by Lemma 3 L(x) must be positive (negative) definite on T M.
The saddle point case is an immediate consequence of the preceding argument.
D.E.D.

Now let us vary the right hand side b € Rm and consider a critical
point x of (P) as a function of b, denoted by x(b). A sufficient
condition that x(*) 1is a C1 function of b is the nonsingularity of the
matrix

Lix) Dg(x)T
(3.4)
Dg(x) 0
(this follows from the implicit function theorem).

Consider the function Fb : R" x Rm > Rn x R defined by Fb(x,A) s =
(Df(x)T + Dg(x)TX, g(x) - b). Then the nonsingularity of (3.4) for every
critical point x and its associated Lagrange multiplier A, 1is equivalent
to Fp & 0, which is equivalent to f being a Morse function on M = q-1(b);
namely we have

Theorem B. Let g A b. Then

Fy # 0 iff f is a Morse function on M = g by .




Proof.

Let (¢,U) be a local parametrization of M at x such that x = ¢(p)

for pe U < R

_1 .
(If) Let (x,)) € Fb (0), then x is a critical point of f on M (Lemma

1) and x 1is nondegenerate because f 1is a Morse function on M. Suppose

L(x) Dg(x)T s L(x)s + Dg(X)Tt 0
= = « Then s € Ker Dg(x) = TxM
Dg(x) 0 t Dg(x)s 0
_ T T T T
and L(x)s = -Dg(x) t € Im Dg(x) . Note that Im Dg(x)* = Ker Dé(p) .

Because we have Im Dg(x)T = (Ker Dg(x))l (orthogonal complement of Ker Dg(x)

in R%), Ker D¢(p)T = (Im D¢(p))l, and Ker Dg(x) T M = Im Dé(p). Hence

X

L(x)s e L{x) T M n Ker D¢(p)T' so by (3.3) L(x)s = 0. sSince L{(x) is
1 -1 on TM, this implies s = 0. Hence t = 0 since Dg(x)T is 1 - 1.
Therefore, we obtain Ker DFb(x,k) = {0} for any (x,A) € F;1(0). Hence
Fp A 0.
(Only if)
Let x be a critical point of f on M. Then there exists A € rR"

such that Fb(x,k) = 0 by Lemma 1. Suppose D¢(p)TL(x)D¢(p)r = for some

0
n-m T T
r € R . Let s = D¢(p)r, then L(x)s € Ker D$(p) = Im Dg(x) hence

L{x)s = Dg(x)Tt for some t € R". Then
Lix) Dg(x)T s L(x)s =~ Dg(x)Tt 0
= = because s € Im D¢(p) =
Dg(x) 0 -t Dg(x)s 0
T,M = Ker Dg(x). Hence s =0 and r = 0 because DFb(x,A) is nonsingular
and D¢(p) is 1 - 1. Therefore D¢(p)TL(x)D¢(p) is 1 - 1, hence

nonsingular, and by Lemma 3 x 1is rondegenerate.

Q.E.D.

~10-
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The third property of Morse programs is genericity. In general (P) is

not necessarily a Morse program, but we have,

=-m+ 1
Theorem c.}) If f € 02 and g € c” + then for almost every fixed

v E Rw, (p(u,v)) is a Morse program having at most one global solution for

n
almost every u € R .

Proof. By Sard's Theorem (Appendix (2)) if g : R" » " is of class Cn-m+1’

then g & btv for almost every v ¢ R". For a C? manifold X E_Rn and a
02 map h : X » R1, h(x) - uTx is a Morse function for almost every u € R
(Appendix (6)). Therefore for v € o such that g A btv, f(x) - ulx is a

Morse function on g-1(b+v) for almost every u € Rn. By Araujo and Mas-

Colell (([1], Theorem 1),62) we have

. m
Fix any v € R, then for almost every u € Rn

(P(u,v)) has at most one global solution.

Q.E.D.

1)
It can be shown that

If feC? and g ¢ CPTTI,

then for almost every

(u,v) € R" x Rm, (P(u,v)) 1is a Morse programe.
(See the remark previous to Theorem E in section 4.)
2)
Truman Bewley suggested the use of the Araujo/Mas-Colell theorem. For our
| application, their theorem can be stated "Let X be a subset of rR",
' ¢ : X "R be continuous, and ¢ : X x R"5 R be defined by ¢(:..,u) =
g{x) = uTx for x e X, u € R’ Then the function d(e,u) : X > R has at
most one minimizer for almost every u € R'." For our application for Theorem

! C, let X = g '(btv) and &(x,u) = £(x) - uTx.

| ?'
|

11~




4. Equality Constraints: Global Properties of Proper Morse Programs

A mapping g : Rn > Rm is called proper if the preimage of every compa

m

set in R is compact in R?. It is easily shown that g 1is proper if and

only if
{x .} < R", IX 0> @2 Ig(X ) +

where (el is the Euclidean norm.

Definition. (Brown, Heal and Westhoff [3]))

A program (P) 1is called proper if g 1is proper.

In this section we consider some global properties of proper Morse
programs - global duality (Theorem D) and local uniqueness (Proposition 6,
Theorem E).

A proper program has at least one global solution since g-1(b) is
compact, hence by Araujo/Mas-Colell [1] if (P) is proper (P(u,0)) has a

unique global solution for almost every u € R". We will consider a family

parametrized programs
(P(y)): minimize {f(x) subject to g{(x) =y} ,
xE:Rn
and its global optimum value function
w(y) : = minimum{f(x) subject to g(x) = y} .

We also consider a program

)z minimize {f(x) subject to g(x) = b} ,
XEK

-12-
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and its dual

(D): maximize ¢O(A) .

m
AER

where

950 = minimum {£(x) + A" (g(x) = b) + L ug(x) - 1%},
XEK
K is a compact set of R", and o » 0.
Since K is compact, there exists a global minimizer of ¢O(A) for any
A eR" and ¢ > 0.
Hestenes showed
Theorem ([9] Chapter 5, Theorem 4.4)

*
If x is a unique global minimum of (PK) such that

* * * * * m * *
DEf(x )T + Dg(x )TA =0 for some A & R" and D2f(x ) + ) Aingi(x ) is
1

*
positive definite on Ker Dg(x ), then there exists 00 2 0 such that for

* *
> . . 1 .
any ¢ ao, x is a unique global solution of ¢O(A } and hence

* *
¢°(A ) = £(x ).

As a matter of fact, we can claim

*
¢G(X ) = max ¢O(X)
A
namely we have
Theorem D

If g is a proper Morse program having a unique global solution x'

*
with the associated Lagrange multiplier X , and if we take K - g"(b),

g R . e




1
!

then there exists co 2 0 such that for any ¢ » 0o, x' is a unique global

0

*
solution of oo(k ) and

: *
¢U(A ) = mix ¢°(A) = w(b) = f(x ) .

Remark

The assumption is satisfied almost always if f € C2 and g € Cn-m+1'

Proof

- *
Since K o5 g 1(b), we have w(b) = f(x ), hence it suffices to show

*
¢0(A ) = max ¢°(A), which follows from (4.1) in the next lemma.

A
Q.E.D.

Lemma 4

(a) ¢o(°) is a concave function of A for any o0 > 0

(b) For any A € Rm, g(xx) - b is a supergradient1) of

¢o at A, where Xy is a global minimizer of oa(A).

Proof

(a) is trivial. (b): We will show that for any u ¢ Rm,
(4.1) 6 ) <o )+ (- (g(x,) =~ b) .

o (o} A

By the definition of Xy, we have

T g 2

(4.2) ¢o(u) = f(xu) + (g(xu) - b) + > Mg(x“) - bl R
_ T - s - 2

(4.3) ¢°(X) = f(xx) + A (g(xx) b) + 2 Ig(xx) bl '

1)
Rockafellar (({13] §23)

-14-




and

. T . o 2
(4.4) QO(L) < f(xx) +u (g(xx) b) + 2 “g(xx) bl .

Substituting (4.2) and (4.3) into (4.4), we obtain (4.1).
Q.E.D.

i m
Let us define a function F : R® x R" x R" » R" x R" by

F(x,A,y) : = (DE(x) + Dg(x)TA, g(x) - y) .

We define Fy(x,x) as F(x,A,y). The next lemma is a key step toward our
sensitivity analysis of proper Morse programs.
Lemma 5 (cf. Brown/Heal/wWwesthoff [3])

If g is proper, then

(a) (P(y)) is a Morse program

= vyevY:={ye R" | g9 & vy, Fy b5}

(b) Y 1is open in R

Proof (a) is equivalent to Theorem B.

(b): We claim that {ylg 4 y} is open in R™ and {ylg 4 y. F & 0} is
open in {ylg 4 y}. Since both proofs are similar, we omit the first proof.
So we will prove {ylg 4 vy, Fy 4 0} is open in {ylg 4 y} which is open in
",

Suppose 1t is not open at yo e {ylg a v, Fy & 0}. Then there exist

- 0 .
yn e {ylg 4 v}, (xn, Xn) € F ;(0) such that yn *y and DF n(xn, Xn) is

y b4

-15-
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0 such that K < {ylg i yi

singular. Let K be a compact neighborhood of y
and hence Dg(x) has full rank for any x ¢ 9-1(x).

Now for sufficiently large n, x" € 9-1(K). Since g is proper and
n,

g '(K) is compact, there exists a subsequence {x 7} of {x"} such that
n. _ n. _ n. n.
x J € g 1(l(), X I, xo for some x0 € g 1(K). Since (x 3, Yy 1) - (xo,yo)
n. n.
and g(x )y = Yy J, we have g(xo) = yo. By g 4 yn we have
(4.5) A% = ax™ ¢ = =(pg(x™Dba(x™T) Tog(xMpe(x™T .
-1 n
Since A(*) is a continuous function of x on g '(K), and since x J,
n, n,
xo € K and x J » xo, we have A 7 + AO HES X(xo). Then we obtain
n, n, n n. n
j j j 0 0 j j 0,0
k22 0y D - 6%y ana 0=F AN e C0% =0 .

y y
By F g 4 0, DF 0(xo, AO) is nonsingular. However we have also
n. n, 0 .0 n, n,
DF n (x J,A J) + DF 0(x ,A» ), hence DF n (x J,A J) is nonsingular for
y 3 Y y ]
sufficiently large nj' which contradicts our assumption. Therefore H

{ylg & y. Fy 4 0} is open in {ylg 4 vyl.

Q.E.L.

Proposition 6 (Local Uniqueness)

Let g be a proper function. Then the number of craitical points of

etk

(P(y)), denoted #(P(y)), is finite for any vy € Y, and it is a locally

constant function on the open set Y.




-—n-———-—wr-nuglll.-l'..-.-.-::—
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Proof
Let (P(y)) be a proper Morse program, then 9-1(;) is compact and each
critical point of (P(;)) is isolated. An isolated set in a compact set is
finite, hence #(P(y)) is finite. Let #(P(y)) = k and let x° and X be
respectively a critical point of (P(;)) and its associated Lagrange
multiplier (i = 1,2,**¢,k). By the implicit function theorem (Edwards (5] p.
417), for each i = 1,¢+¢,k; there exist neighborhoods wi(;) c Y,
1 i i i

ut(xh) = rRY, v' (i) < R™, and c' functions x'(¢) : W » U,

Ai(') : wi + Vi such that
xt(p ANy = 3D

(4.6) F(x,A,y) =0 <= (x,0) = (x(y) A (y)) on U x v x wt .

Now let us take a neighborhood W of ; such that Wc 2 w and
x1(W),°°',xk(W) are pairwise disjoint.

Since F(xi(y),Ai(y),y) =0 for yE W, xi(y) is a critical point of
(P(y)) for i = 1,ee¢ k. Since x1(w),-~0,xk(W) are pairwise disjoint,
x1(y),-°°,xk(y) are k distinct critical points of (P(y)). Therefore we

obtain #(P(y)) » k for y € W.

Let us show that actually equality holds. Suppose, to the contrary,
. L L £ - L
there exists {y } such that y e W, y +*y and #(P(y )) > k. Then there
£ £ L N
exists {(xl,X )} such that F(xz,kz,y ) =0 and x ¢ (x1(y2),---,xk(y2)).

I S . L .
Note that x is a critical point of (P(y )) with the associated Lagrange

2
multiplier X .

-17=
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Take € > 0 so that a closed e-ball Be(;) € W, then there exists L

L - - -
such that £ > L =y € Be(y). Since g is proper, g 1(Be(y)) is compact

L -1 -
and L > L =x €g (Be(y)). Then there exists a converging subsequence of

(%)

. L *
Lo For the notational convenience we assume X + x for some

L ] _1 - -
X € g (Be(y)). Since Be(y) €Y, Dg(x) is of full rank for any

X € g.1(Be(;)). Therefore, {xz} < g_1(Be(;)), x* € 9-1(86(;)), xz > x

L>L
L * * m
' imply XA + A for some A € R by (4.5). Then by the continuity of F,

* * * * _J —J
we obtain F(x ,A ,y) = 0. This implies (x ,A ) = (x”,A”) for some

j e {1,°0¢,k}, hence for sufficiently large £, we obtain

2 o . .
F(x ,Xllyz) =0 |, (xl,xl,yl) e vl x v ox w

and

t, 2
x* ¢ {x'(y ).°",xk(y£)} .

This contradicts to (4.6), so completes the proof.

Q.EoDn
Note that w(y) = min f(xi(y)) for y € W, and hence we obtain
1<ikk
Corollary 7
' 1f (P(y)) is a proper Morse program, then in a neighborhood of y, 1

w(*) is the minimum of a finite number (= #(P(y)) of ¢? functions (as a

result w(+¢}) is a locally Lipschitz function on the open set Y). Moreover,

PORRPRNET VT S

if (P(;)) has a unique global solution, then in_a neighborhoqQd of ;,

2

w(*) 1is a C function.

-18-
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Proof

Remark

It is easily verified (e.g. Luenberger [11], 10.5) that

DECx (y)) = =AY (y), DPE(x1(y)) = -DAY(y) (i = 1,000,k) .

hence f(xl(')) is in C2. The fact that w(°*) is locally Lipschitz on Y

follows from Clarke [4].

Q.E.D.

The differentiability of the local optimum value function was shown by
Fiacco/McCormick [6] and Fiacco [7], using the implicit function theorem. 1In

our proper programs, we consider the global optimum value function w(+), and

we will show in Theorem E(d), that the global optimum value function

w{u,v) : = minimum{f(x) - ulx subject to g(x) = b + v}

for (P(u,v)) is C2 function of (u,v) on an open and dense set of

-+
R* x R, if fec® and gect ™I,

Now let us make a few remarks on the open set Y.

Definition (Brown/Heal/Westhoff{3]) 3
A program (P) is called regular if F 4 0. 4

+
The regularity is a generic property, namely if f and g ¢ Cm 2 (hence

F € Cm+1), then F 4 (u,v) for almost every (u,v) € Rn x Rm by Sard's

theorem, hence (P(u,v)) is regular for almost every (u,v) ¢ R" x R™. If

~19-




<+
f,g9 € Cm 2 and F 4 0, then FY A 0 for almost every vy € Rm by virtue of

-mt+1
the parametric transversality theorem (Appendix (4)). Since g € Cn ‘
this implies g Ay for almost every y € Rm, summarizing the above we
obtain

Proposition 8 (Brown/Heal/Westhoff [3])

(a) If f,g ¢ Cm+2 then (P(u,v)) 1is a reqular program for almost

n m
every (u,v) € Rx R .

max(m+2,n~m+1)

(b) If (P) is regqular, f € Cm+2, ge C then Y has

full measure in R%.

Corollary 9 (cf. [3])

+
If (P) js a proper regular program, f € Cm 2, and

g€ Cmax(m+2,n—m+1)' then Y is open and dense in R".

Our final result in this section considers the differentiability of the
global optimum value function w(+,*) for (P(u,v)).

. - m n m m
First let us define F : R® x R* x R® x R" » R” x R™ by

F(x,l,u,v) : = (Df(x)T - u + Dg(x)TX, g{x) = b - v)

and F : " x "+ R x R® by
(u,v)

F(u,v)(x'k) : = F(x,A,u,v) .

Then we have
T
_ Lix) Dg(x)
DF( v)(x,A) =
helt Dg(x) 0
2 T2

where L(x) = D f(x) + z XiD gi(x). Therefore following exactly the same

1
argument as in Theorem B, we obtain

-20~




“ Lemma 10

If g &b+ v, then f£f(x) - uTx is a Morse function on g"(b+v) if

and only if F A 0.
(u,v)

Let us denote

z : = {(u,v) € R" x R™(P(u,v)) is a Morse program}

and

n m (P(u,v)) 1is a Morse program
Z = (u,v) € R x R .
having a unique global solution

Then by Lemma 10 we have

z=1{(uv) e R"xR"|g 4b+v, F 4 0} .

F
i (u,v)
| . 2 n-mt1 .
Note that if f € C and g e C , then 2Z has full measure in

R® x R". Because {(u,v){g 4 b + v} has full measure and
{(U.V)lﬁ(u v * 0} has full measure by Sard's theorem.
’
Following essentially the same arqument as in Lemma 5 and Proposition 6,

it is easy to prove the following

Theorem E

; Suppose g is a proper function. Then we have
t n m

E (a) Z and 2 are open sets of R X R

)

(b) the number of critical points of (P(u,v)) is finite for any

(u,v) € 2, and it is locally constant on Z.

(c) w(e,*) 1is locally expressive as the minimum of a finite number

of C2 functions on 2. ;
-m+
(d) 1f fe C2 and g € c” 1, then w(+,*) is a C2 function

!
on Z° which is open and dense in rR" x rR™.
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! 5. 1Inequality Constraints: Definition of Morse Programs

' Let us consider a program
(Q): minimize{f(x) subject to gi(x) < b}

and a perturbation

(Q(u,v)): minimize{f(x) - uTx subject to gi{x) < b + v}

where f : R + R1 and q : R" » R" are of class Cz, u € Rn, v € R and

n o m.

(b.) , 3% =1 -~4

Let I :={1,2,°+,nls g (x): = (950x1) jeq0 Byt = (By)yeq

for all J ¢ I. Let us denote

My j: = (xlqj(x) =D, g, (x) < bi}
; BMJIL- = {xqu(x) = b,, g, (%) = bi}

for all J ¢ I and it I. For the notational convenience, we denote MJ: =

MJ,i if i€ J and Xy:= MJ,i' axi: = aMJ,i if J = ¢.
i € = 3 , = .
Note that if 1 J then MJ,i MJ,1 MJ
We will reduce the inequality case to some equalities and one inequality
case.

Definition. A program (Q) 1is called a Morse program if (Q) satisfies

(M1) 95 A bi for all i e 1

A
(M2) QJiX. b, and nga & bJ for all nonempty J ¢ I and
i Xi
igg
(M3) f is a Morse function on My . and 3M_ . for all Jc I
¢ J,1 -

and i ¢ 1 .

(M4) £ has no critical points on 3M ; forall Jc I and ;

J,i J,
id J.

M

-22-
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Remark
By (M1), X = {x[gi(x) < bi} is n-dimensional manifold with boundary

X, = 9; (bi) (Appendix (10)). Then (M2) implies that MJ,i = My Xy is

(n - |J|)-dimensional manifold with boundary aMJ’1 = MJ n Bxi = MJU{i}
(Appendix (11)). These manifolds of different dimensions cover the feasible
region of (Q), and by (M3) we will restrict the objective function f on each
manifold when we argue the optimality conditions of (D). In the next section
(Proposition 15), we will show that assuming (M1) and (M2), (M4) implies the

strict complementary slackness condition.

Definition. x 1is a critical point of (Q) if g(x) € b and x 1s a critical

point of My ., where J(x): = tllgi(x) = bl).
The next theorem states the important properties of a Morse program,
which is analogous to Theorem A.

Theorem F. If (Q) is a Morse program and x 1is a critical point of (Q) with

J = J(x), then

(a) DgJ(x) has full rank.

; . T
(b)1) there exists a unique , . M such that Df(x)

+ Dg(x)TA = 0 and A\ £ 0 iff ie J.

m
(c) L(x) = D%f(x) + Z Aingi(x) induces an isomorphism on
i=1
TxMJ'
(a) on T/Mgy, [(x) is positive definite iff x is a local

minimum; hegative definite iff x 1is a local maximum;

indefinite iff x is a saddle point on Mj.

1)

>0 for all 3 +J 1if x 1is a local minimum, \j <0 for all 3 - J

if Jx is a local maximum (see Luenberger [11], 10.6).




Proof. (a) and (c¢) follow from (M1), (M2) and Lemma 3. (b) follows from
Lemma 1 and (M4) (see Proposition 15). Since a local minimum (or maximum)

point of (Q) is also a local minimum (or maximum) point of f on M (d)

Jl
follows from Theorem A(d).

0.E.D.

6. Inequality Constraints: Generic Properties of Morse Programs

. 2 i
We will show that if f € C and g € Cn, then for almost every fixed
v € Rm, (Q(u,v)) 1is a Morse program for almost every u € Rn. First of all

we consider the genericity of properties (M1) - (M3).

Lemma 11. If g e C', then (M1) and (M2) hold for almost every b € R'.

Proof. We follow the proof of Spingarn/Rockafeller [17], Theorem 1. By

Ssard's theorem, if g € c” then the set of critical values of 95 is of

il

. . m .
measure zero in RI for i = 1,¢¢e,m. Then Ti : {beRr |bi is a

critical value of gi} is of measure zero in R™ (i 1,e¢e,m), because
every (m-|i|)-dimensional horizontal slice of Ti is of measure zero as a

subset of Rll!, hence Ti itself must have measure zero by Fubini's theorem

Cs

(Appendix (3)). Hence T = Ti has measure zero. By Sard's theorem with
i=1

boundary (Appendix (2)), if g € c® and be R - T (hence X; is n-

dimensional manifold with boundary Bxi), then for any nonempty J © 1 and

any i k J, the set of critical values of 93} or qJ' is of measure
Xi 3X.
i
zero in RIJI. So, again, by Fubini's theorem (Appendix (3)),
n bJ is a critical value of\
S_ . : = beR - T N
J,1 gJI or ng I
X, 3K, K
i i

has measure zero in R™

for all nonempty J < I and all i t J. Then
has measure zero in R™.

DeE.D.
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Let us take b e S = {b ¢ le b satisfies (M1) and (M2)}. Then for any

J cl and i ¢ I, f(x) - uTx is a Morse function on My and an i for
— ’ ’

almost every u € R" by Appendix (6). Therefore we obtain

Corollary 12. f fe¢ C2 and g € Cn, then for almost every v € Rm,

———

(Q(u,v)) satisfies (M1), (M2) and (M3) for almost every u € rR".

The genericity of the strict complementary slackness condition is much more
complicated and we need some preliminary results.

Proposition 13

Let M be an m-dimensional CY manifold in R" with nonempty boundary

1
dM and let f : M * R be a cf map. Then for almost every u € Rn, ct

map f(x) - u'x defined on M has no critical point on dM.
)

x € M is a critical point of f(x) -~ ul

T 1 1
u € Df(x) + TxM (TxM is the orthogonal complement of T, M in rRM. Let

Proot ! x iff DE(X)T - u 1l T M iff

E: = {(x,u) € 3M x Rnlu € Df(x)T + Tle}. Then E is (n-1)~dimensional

Cr 1 submanifold of dM x R". Let us prove this fact. For any given

X € 3M there exists an open set U of R® and a submersion g : g+ R

such that U : =M n U = g (0) and x € 90U : = OM n v (Appendix (7)). Let

@ : 3Uux R ™ > M x R® be d(x,y) : = (x, Df(x)T + Dg(x)Ty); (¢,V) be a

local parametrization of dM at X such that x = ¢(;), vev < Rm-1, and

$(v) € 8U; and ¢ : V x Rn—m > aM x R" be wiv,y) = d(é(v), y). Then

1 m

Yy € Cr- and for any (v,y) € V x R we have
DY(v,y) = [°¢‘V’ ] B
Lot Dg(¢(v))

1)
This line of argument was suggested by W. G. Dwyer.

-2s- |
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Since Dé¢(v) and Dg(¢(v))T is 1-%1, DY(v,y) is 1-1 (i.e. ¢ 1is an

K]

immersion) hence by the definition ¢ is an immersion. Let E(JU) =
1
{(x,u) € U x Rnlu € Df(x)T + TxM } c M x Rn, then since Tle = Im Dg(x)T

¢ : 3u x R"™ » E(3U) is bijective and proper, hence ¢ is an embedding of

3w x R"™ into oM x R". Consequently E(dU) is a Cr-1 manifold
(Appendix (8)) parametrized by ¢, with dimension = dim U+ n-m=m - 1 +
n-m=n- 1, Since every point of E has such a neighborhood, E 1is a
Cr-1 manifolds (cf. Guillemin/Pollack [8], normal bundle on page 71.) Let
7 : M xR »R bea projection map., Then since E is (n=-1)-dimensional,
7 (E) E.Rn has measure zero in R" (Appendix (9)).

! since W(E) = {u e Rplu € Df(x)T + Tle for some x € 3dM} has measure

zero, for almost every u € R® (i.es, u d m(E)) every x € dM is not a

critical point of f(x) - uTx on M. This completes the proof.

Q«E.D.
Lemma 14. Let g : R »> Rm, h:R"» R’; b ¢ Rm, c € R’; n>m+ 1;
X : = {x|h(x) < ¢}, and 9% = h-1(c). Suppose h 4 ¢, then we have

(a) If 9ix 4 br I1ax 4 b then M : = g"(b) nXx is (n-m)-

dimensional manifold with boundary oM : = g"(b) n h-1(c),

and TxaM = Ker Dg(x) n Ker Dh(x).

(b) A b iff (g,h) & (b,c).

9%
Proof. Since h A ¢, X is n-dimensional manifold with boundary
3% = h™'(c) by Appendix (10).
(a): By Appendix (11}, M is (n-m)-dimensional manifold with

boundary oM - ——1(b) n h-1(c). A b and Txax =

9)ax
Ker Dh(X) imply TxaM = Ker Dg(x) n Ker Dh(x) by Appendix

(12).




Dg{(x) 1

Dh(x)

(b): (only if): Since dim TxaM = n-m~1, | ) : R" » R™ x R

is onto for any x € dM, hence (g,h) 4 (b,c).
(if): Let x ¢ (glax)-1(b) ice. x € (g,n) " \(b,c). wWe will

show that Dg{x) : Txax » R® is onto. Since Txax =

IT 93X
x

Ker Dh(x), Ker(Dg(x) ) = Ker Dg(x) n Ker Dh(x). However

l'rxax
dim(Ker Dg(x) n Ker Dh(x)) = n-m=-1 because (g,h) 4 (b,c),

and since dim Txax = n-1, we obtain Dg(x) is onto.

|T ax
x
Hence glax A b.

Q.E.D.

Theorem G. (Strict Complementary Slackness)

Consider a nonlinear programming problem

minimize {f(x) subject to g(x) = b, h(x) < c}

1
where f : Rn >R, g: Rn + Rm, h Rn > R1; £,9,h € C1; n > mkl,

.
]

Let X : = {x|h(x) < ¢}, 9% h '), M: =g (b) n X, and

M : = g-1(b) n 9X. Suppose h A ¢, 9)x A b and 9|ax A b. Let x bea

*
critical point of flaM' Then the Lagrange multiplier u associated with

*
the constraint h(x) € ¢ is nonzero if and only if x is not a critical

point of fIM‘

Proof. By Lemma 14(a), M is (n-m)-dimensional manifold with boundary M.

*
Note that x* is a critical point of f]BM if and only if Df(x ) € T *aMl.
X

* *
We have T *aMl = Im(Dg(x )T, Dh(x )T) because (g,h) A (b,c) by Lemma

X * *
14(b), hence there exists a unique (A ,u ) € R x R1 such that

* * * * *
(6.1) pe(x )T + pgx )" + phxH T =0 .




-y

* s . * T Iy * T
If x is not a critical point of fIM' then Df(x ) i T M = Im Dgi(x )

x
* *
and hence in (6.1), 1 % 0. On the other hand if «x is a critical point of

* * *
flM’ then by the uniqueness of (A ,u ) in (6.1), u = 0.

Q.E.D.
This theorem provides a geometric interpretation of the strict
complementary slackness, namely the degenerate Lagrange multiplier occurs if
and only if the critical point of f on the boundary of the manifold M is
also a critcal point of fIM‘ Let us illustrate this fact by an example.
Example (Avriel (2), Example 3.1.4)

Consider the following program:

minimize £(x} = x,
subject to g(x) = (x1-3)2 + (x2-2)2 - 13 =0

h(x) = (x,-4)% + xg - 16 < 0

2
A
-1 _ 0
x = (O)
-2 6.4
X .2
-3 3+/13
/ x = 5 )
R s
> 1

g(x) =0
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It is easily verified that g A0, h i 0. 9y -1 # 0 1is obvioua because
h " (0)

{xlg(x) = 0} meets {xlh(x) = 0} transversally. Hence all assumptions in

Theorem G are satisfied.

Let M : = {x|g(x) = 0, h(x) € 0}, then 3M : = {;‘,;2}. Since every
point is a critical point of any function defined on 0O-dimensional manifold,
;1 and ;2 are critical points of f|aM. Since Df(x) = (1,0) for any
X € Rn, fIM has only one critical point ;3 which is not an element of
dM. Therefore by Theorem G, the associated Lagrange multiplier of the

constraint h(x) < 0, E‘ (or 32) at ;1 (or ;2) is nonzero.
Now we can show that (M4) implies the strict complementary slackness

condition.

Proposition 15

Suppose (Q) satisfies (M1), (M2) and (M4). Then every Lagrange

multiplier associated with an active constraint is nonzero (i.e. strict

complementary slackness condition holds).

Proof

Let x be a critical point of (Q) such that J = J(x). Then by (M1) and

(M2), there exists a unique X € R™ such that A c = 0 and

To show ij # 0 for all 3j e J, pick any j € J. By (M1) and (M2), we have

95 % byr 95 (53, P Progyye -0} 5y Py-{5) *
3

X,
J

R




Since x is a critical point of (Q), this means x is a critcal point of

flMJ and QJ = aMJ_{j}’j. By (M4), x is not a critical point of

b4 Hence by Theorem G, the Lagrange multiplier Aj associated with

My_(hh,g
the constraint gj(x) < bj is nonzero.
Q+E.D.
By Proposition 13, the genericity of (M4) is obtained and hence we have
Theorem H (cf. Spingarn/Rockafellar [17], Corollary)

I fe C2 and g E Cn, then for almost every fixed v ¢ Rm, (Q(u,v))

——

is a Morse program having at most one global solution for almost every

u€Rn.
Proof
By Araujo/Mascolell ([1]), we have also

Fix an v E Rm, then for almost every u ¢ ] (Q(u,v)) as at most
2ix any

one global solution.

Use Corollary 12, and Proposition 13.

QoEo De.
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Appendix

(Guillemin/Pollack (8], Hirsch (10])
(1) Morse lemma

Let p € M be a nondegenerate critical point of f : M + R’. Then there
is a local coordinate system (x1,...,xm) in a neighborhood U of p such

that

+ see + X

for some 0 € A < m.

(2) sard's theorem (with boundary)
Y

Let £ : X+ Y bea C map of a CY manifold X with boundary 09X

¥ manifold Y. Then almost every y € Y 1is a regular

into a boundaryless C
value of both f : X * Y and f‘ax : 0X + Y if Yy > max(0, dim X -
dim Y).

(3) Fubini's theorem

m
Let A C R" x R be a measurable set such that for almost every

]

m n )

veR, 2 {u€e R I(u,v) € A} has measure zero in R™. Then A has
, n m

measure z2ero in R X R . J

(4) Parametric transversality thoorem

Let F : X xV~*+Y bea CY map of CY manifolds and A be any Cy

submanifold of Y. If FA A and Yy > max(0, dim X - dim Y) then F, & A
for almost every v € V where Fv(x) = F(x,v) for x € X.
(5) Let f : X* Y bea CY map such that f 4 Z for a CY submanifold .

Z of Y, then f~1(Z) is a CY submanifold of X and dim f"(z) =

-3 1=




dim X - dim Y + dim 2., As a Special case if f 'y for some y ¢ Y, then

=1 1

t (y) s a CY submanifold of X and dim f (y) = dim X - dam Y.

(b) Let f : X + Rl be a c* map of a ¢? manifold X in R", Then for

n ‘ .
almost every u € R the function f(x) -~ u'x 1s a Morse function on X.

{7) Let X _ k" be m~dimensional manifold with boundary J3X. Then for each

int x € 93X, there exists an open set U of L and a submersion
po P

-~ - ~

g : U Rn-m such that U = X G =g (0) and x g€ JU = oX U,

(8) An embedding f : X » Y maps X differomorphically onto a submanifold
of Y.

(9) Let X, Y be manifolds with dim X < dim Y. If f : X + Y 1s a <

map then f(X) has measure zero in Y.

; 1
(10) Let f : X »* R1 be a CY map such that f ! ¢ for some ¢ € R . Then

{x|f(x) € ¢} is a C' submanifold of X with boundary £ '(c).

(11) Let f : X+ Y be a c' map of a CY manifold X with boundary X

onto a boundaryless ¢’ manifold Y. If £z, f‘&x - 2 for a boundaryless

submanifold Z of Y, then f-'(Z) is a ¢’ submanifold of X witn

boundary af"(z) = f-1(Z) 13X and dim £ '(2) = dim X -~ dim Y + dim 2.
(12) Let X, Z Dbe submanifolds of Y such that X * 2. Ther X Z 1s
again a submanifold of Y, dim(X n 2) = dim X + dim 2 - dim Y dnd T, (X 2
= TX n T, 2 for any x € X : Z,

More generally, let f : X + Y be a map transversal to a <ubmanifold

-1

Z in Y. Then W = f '(Z) 1s a submanifold of X and wa = Ker »Of ~here

. T .
Dfx : .xX * Tf(x)Y
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